Кошки… Домашние любимцы многих людей. Кому-то нравятся рыжие, кому-то черные, кому-то мозаичные. Других привлекают персы, сиамские коты или египетские кошки. Это все дело вкуса.
Однако окрас животного, его экстерьер, характер, болезни, патологии, мутации зависят не только от породы или образа жизни, но и от хромосомного набора (в первую очередь от него), который является постоянным и определенным.
И все же, сколько хромосом у кошки, какое их количество и функции? Об этом и пойдет речь ниже.
Геном и хромосомы
Говорить о том, сколько хромосом у кошки, крайне сложно без основополагающих знаний генетики.
Геном представляет собой структуру, в которую заключена генетическая информация об организме. Практически любая клетка содержит геном. А вот хромосома вмещает в себя всю информацию о строении клетки. Хромосома представляет собой нуклеопротеидные структуры в ядре эукариотической клетки. В хромосоме содержится значительная часть наследственной информации, которая хранится, реализуется и передается будущему поколению.
Хромосома – это структура клеточного ядра, состоящая из дезоксирибонуклеиновой кислоты (ДНК) и белков. Стоит напомнить, что ДНК — это макромолекула, обеспечивающая хранение, передачу из поколения в поколение, реализацию генетической программы развития живого организма.
Существует два вида хромосом у разных организмов:
Эукариотический тип – характерен для живых организмов (эукариот), клетки которых содержат ядерную оболочку, молекулы ДНК в ядре и митохондриях.
Прокариотический тип – встречается у организмов, в клетках которых отсутствует ядерная оболочка, а молекулы ДНК заключены в гистоны (прокариоты).
Внешне хромосома похожа на длинную нить с нанизанными бусинами, каждая из которой – ген. Помимо этого, ген находится на своем строго зафиксированном участке хромосоме — локусе.
Теоретический аспект вопроса
Хромосома – важная единица ядра клетки, которая несёт в себе генетическую информацию. Она представлена молекулой ДНК, которая образует комплексы с белками-гистонами. Гистоны в свою очередь содержат большое количество лизина и аргинина. В микроскопе хромосомы отчётливо видны в период деления клетки, в неделящейся клетке они заметны плохо – нити ДНК слишком сильно вытянуты и тонки.
У кошек насчитывается 19 пар хромосом, путём несложных вычислений, можно определить, что весь наследственный материал у них расположен в 38-ми хромосомах. Для сравнения, у человека это количество равно 46, то есть в 23-х парах.
Кошки, как и люди – это многоклеточные организмы. Клетка – мелкая структура организма, способная к самовоспроизведению, в состав которой входят компоненты, которые взаимодействуют между собой. Эти компоненты именуются органеллами. Клетки кошек состоят из следующих органелл:
- Лизосома – самые мелкие клеточные органеллы, представлены они в виде пузырьков, внутри которых содержатся ферменты, которые помогают им нести их главную функцию – расщепление жиров, белков и углеводов.
- Аппарат Гольджи – система полостей, в которых происходит накопление и распределение по клетке поступивших макромолекул. Также аппарат Гольджи участвует в образовании лизосом.
- Центриоли – расположены в клеточном центре, представляют собой цилиндры из микротрубочек. Именно микротрубочки определяют форму и геометрию клетки и ориентируют органеллы при их движении.
- Плазматическая мембрана – отделяет клетки от соседних элементов.
- Волокна цитоскелета – образованы белками-филаментами, которые формируют опорно-двигательный аппарат клетки и структурируют её. Именно благодаря филаментам клетки могут менять свою форму и взаиморасположение органелл.
- Митохондрии – источник энергии клетки. Могут иметь форму шара, нити или палочки. Внутри неё происходит процесс преобразования энергии поступивших в клетку питательных веществ в энергию АТФ.
- Эндоплазматическая сеть – система, которая состоит из канальцев и полостей, которые имеют разную форму и размеры. Данная органелла выполняет функции перемещения и обмена веществ внутри клеток, также являются местом, где прикрепляется рибосома, покинувшая ядро.
- Рибосома – мелкие немембранные органеллы, на поверхности которых осуществляется синтез белков.
- Ядро – самая крупная органелла, присутствующая в клетке. Именно там находится генетическая информация об организме, заключённая в молекулу ДНК.
- Ядрышко – округлое тельце, которое находится непосредственно в ядре. Является местом сборки рибосом.
Важно понимать, что то, какие признаки получит будущее потомство, зависит вовсе не от количества генов, а от порядка и последовательности расположения огромного количества входящих в ген аминокислот. Генов в кошачьем ДНК около 20 тысяч, они состоят из четырёх аминокислот, которые собраны в группы по три. Эти группы впоследствии формируют алфавит из 64 букв, в котором одна буква обозначает начало одного гена. Он, в свою очередь, несёт информацию о каком-либо индивидуальном свойстве организма.
Пути деления клеток у кошек:
- Митоз – клетка делится после того, как накопила достаточное количество аминокислот. При этом хромосомы воспроизводят сами себя, удваиваются, где дочерние клетки – это точная копия своих родителей. При этом гены имеют 2 и более уровней проявления – доминантные и рецессивные. Митозом делятся соматические клетки.
- Мейоз – при котором у кошек каждому из родителей нужно передать гены только от одной хромосомы, входящей в эту пару. В отличие от митоза, в ходе мейоза число хромосом уменьшается в 2 раза. В момент соединения яйцеклетки со сперматозоидом, несущие в себе половинное количество хромосом – по одной из пары – формируется полный набор – 19 пар. Мейозом делятся половые клетки.
Соматические и половые клетки отличны друг от друга тем, что половые клетки дают начало следующему поколению гамет, а соматические клетки не принимают участия в процессе полового размножения, потому и не оставляют потомства. Существует версия, что роль соматических клеток – поддержание размножения и выживаемости половых клеток.
Кариотип – набор генов – которым обладают современные кошки, был получен от их непосредственного генетического предка – Дикой Африканской кошки. Её гены входят в состав основного набора у кошек всех пород.
Хромосомный набор домашней кошки
Мутация – это частичное изменение генетического кода. Причины мутаций:
- Неполное деление молекул ДНК при мейозе;
- Неполное деление молекул ДНК при митозе;
- Воздействие на деление какого-либо мутагена, например, никотина или радиация.
Количество хромосом у животных
Сколько хромосом в клетках кошки? У любого живого организма имеются гомологические или парные хромосомы и гаплоидные или непарные (половые) хромосомы. К последним относятся яйцеклетка и сперматозоид, они имеют набор ХХ и ХУ соответственно. При делении они распадаются на X, X и X, У. В зависимости от новой комбинации пары в оплодотворенной клетке будет определяться пол нового организма (в нашем случае, котёнка).
На вопрос: «Сколько хромосом в клетках кошки?», генетика дает точный ответ. У домашней кошки хромосомный набор включает 19 пар хромосом (18 парных и 1 непарная: ХХ — у самок и ХУ — у самцов). Общее количество хромосом у кошки равно 38.
У других животных количество хромосом неизменно и индивидуально для каждого вида (например, у собак — 78 хромосом, у лошадей — 64, у коров — 60, у зайца — 48). Напомним, что у людей количество хромосом равно 46.
Сколько хромосом у тигра?
Тигр — большая и красивая кошка. Вид это исключительно азиатский и когда-то встречался повсеместно: от Турции и Ирана до Индии и Сибири. Соответственно, и подвидов у него было множество, большинство из которых, увы, к современности вымерло.
Современных тигров немного — четыре-шесть тысяч особей, причем болшая их часть — тигр бенгальский. К сожалению, проблемой является не только низкая численность этих кошек вообще, но и довольно разорванный ареал, в связи с чем отдельные подвиды практически изолированы друг от друга.
Всё великолепие этого замечательного зверя «записано» в генах, хранящихся ровно 19 парах хромосом. Иными словами хромосом у тигра 38.
Что интересно, 38 хромосом не только у тигра, но и у льва, леопарда, гепарда, ягуара и даже у домашнего кота! Возможная причина этого — относительная молодость вида: предположительно он отделился от общего предка около двух миллионов лет назад, чуть раньше, чем львы и ягуры. Так что неудивительно, что с этими видами у тигров бывают жизнеспособные гибриды.
Тигр (Panthera tigris Linnaeus, 1758), вид рода пантер. Кошка очень крупных размеров: масса тела самцов до 320 кг, самок до 180 кг, длина тела самцов до 290 см, самок до 190-200 см, длина хвоста самцов 115 см, самок до 110 см. На щеках имеются «бакенбарды».
Окраска меха красновато-рыжая или рыжевато-жёлтая с контрастными поперечными узкими полосами. От других крупных кошек отличается окраской и характером рисунка. В кариотипе 38 хромосом.
Тигр
Географическая изменчивость окраски тигра, размеров тела и характера меха велика, реальными признаются около 6-8 подвидов, на территории России — 2, из которых один (туранский тигр) истреблён.
Распространён тигр в лесах и тростниковых зарослях Южной, Юго- Восточной, Средней, отдельных районов Передней и Центральной Азии. В России обитает на Дальнем Востоке. Населяет биотопы с густой древесно-кустарниковой растительностью — тропические леса, мангровые заросли, хвойные горные леса, тугаи, поднимается в горы до 2500-3000 м над уровнем моря. На Дальнем Востоке держится в невысоких горах, в долинах рек, в падях, поросших растительностью маньчжурского типа с преобладанием кедра и дуба. Основа питания — крупные копытные (дикие свиньи, олени, быки, антилопы). Тигр может нападать на домашний скот. Известны случаи людоедства. Хорошо плавает. Держится одиночно, самка — с выводком. Во время гона за одной самкой могут следовать от 2 до 6 самцов. Площадь индивидуального участка у тигра 300-400 км2. В коммуникации тигра большое значение имеют запаховые метки, а также акустические и визуальные сигналы.
Размножение тигров не приурочено к какому-либо определённому сезону, самки участвуют в нём 1 раз в 2-3 года. Течка у самок бывает в любое время года и у непокрытых тигриц повторяется через 2—3 месяца. Рождение молодых обычно происходит весной или поздней осенью. Беременность 95-107 дней, в среднем 103 дня. В помёте обычно 2-4 тигрёнка, редко 5— 6. Котята тигра (масса от 785 до 1043 г) рождаются слепыми, с закрытыми слуховыми проходами. Прозревают на 6-8 день, ушные проходы открываются на 4-5. Растут и развиваются быстро. С самкой держатся 2-3 года, на четвёртом переходят к самостоятельной жизни. Половой зрелости достигают в возрасте 3 года 4 месяца — 3 года 8 месяцев. Редкий вид. Существует специальная международная программа по сохранению тигра в России.
Окраска меха красновато-рыжая или рыжевато-жёлтая с контрастными поперечными узкими полосами. От других крупных кошек отличается окраской и характером рисунка. В кариотипе 38 хромосом.
Тигр
Географическая изменчивость окраски тигра, размеров тела и характера меха велика, реальными признаются около 6-8 подвидов, на территории России — 2, из которых один (туранский тигр) истреблён.
Распространён тигр в лесах и тростниковых зарослях Южной, Юго- Восточной, Средней, отдельных районов Передней и Центральной Азии. В России обитает на Дальнем Востоке. Населяет биотопы с густой древесно-кустарниковой растительностью — тропические леса, мангровые заросли, хвойные горные леса, тугаи, поднимается в горы до 2500-3000 м над уровнем моря. На Дальнем Востоке держится в невысоких горах, в долинах рек, в падях, поросших растительностью маньчжурского типа с преобладанием кедра и дуба. Основа питания — крупные копытные (дикие свиньи, олени, быки, антилопы). Тигр может нападать на домашний скот. Известны случаи людоедства. Хорошо плавает. Держится одиночно, самка — с выводком. Во время гона за одной самкой могут следовать от 2 до 6 самцов. Площадь индивидуального участка у тигра 300-400 км2. В коммуникации тигра большое значение имеют запаховые метки, а также акустические и визуальные сигналы.
Размножение тигров не приурочено к какому-либо определённому сезону, самки участвуют в нём 1 раз в 2-3 года. Течка у самок бывает в любое время года и у непокрытых тигриц повторяется через 2—3 месяца. Рождение молодых обычно происходит весной или поздней осенью. Беременность 95-107 дней, в среднем 103 дня. В помёте обычно 2-4 тигрёнка, редко 5— 6. Котята тигра (масса от 785 до 1043 г) рождаются слепыми, с закрытыми слуховыми проходами. Прозревают на 6-8 день, ушные проходы открываются на 4-5. Растут и развиваются быстро. С самкой держатся 2-3 года, на четвёртом переходят к самостоятельной жизни. Половой зрелости достигают в возрасте 3 года 4 месяца — 3 года 8 месяцев. Редкий вид. Существует специальная международная программа по сохранению тигра в России.
Кариотип и хромосомный комплекс кошки
Кариотип – это парный набор хромосом со специфическим для каждого вида животного числом, размером и формой. Признаки каждого вида живого организма наследуются по кариотипу. Например, кариотипическим признаком может являться наличие хобота у слонов. Рождение слоненка без хобота будет являться отклонением от кариотипической нормы, то есть патологией.
Все клетки парные, от них зависит будущий вид, экстерьер, окрас, характер кошки. Последняя – 19 пара содержит половую информацию и половину хромосомного набора. В процессе оплодотворения обе части соединяются, образуя полноценную клетку.
Если у кота 38 хромосом, сколько их у кошки
Хромосома есть структура, содержащая нуклеиновую кислоту и отвечающая за хранение, исполнение и перенос информации о наследственных признаках. В её основе находится молекула ДНК – дезоксирибонуклеиновая кислота?. Различают два вида хромосом:
- эукариот – содержат ДНК-молекулы в ядре и митохондриях;
- прокариот – содержащие ДНК структуры находятся в безъядерной клетке.
Находящиеся внутри ядра хромосомы представляют собой долгие цепочки с генетической информацией. Ген – это единица наследственности живых существ, участок ДНК. Хромосомы ещё называют частицами наследственности, они составляют пары – у человека их 23, то есть вся наследственная информация о личности содержится на 46 частицах.
Наследственность котов
В соматической клетке кошки 38 хромосом, в которых содержатся молекулы ДНК с генотипической информацией. Генотипические проявления, которые отражаются во внешнем облике живого организма, называются фенотипом. Фенотипические проявления котят различаются по цвету, размеру животного.
Гены у потомства парные – один ген от самки, а другой — от самца. Как известно, гены делятся на доминантные (сильные) и рецессивные (слабые). Доминантные гены обозначаются прописными, латинскими буквами, рецессивные — строчными. В зависимости от их сочетания выделяют гомозиготные (АА или аа) и гетерозиготные (Аа) типы. Доминантный ген проявляется как в гомо-, так и в гетерозиготном состоянии. Рецессивный ген проявит свои признаки лишь в гомозиготном типе (аа). Эти генетические знания полезны при вычислении признаков будущих котят по фенотипическим проявлениям их родителей. Здесь важно знать, какой ген, отвечающий за проявление определенного признака, является рецессивным или доминантным.
Гены окраски животных располагаются в Х-хромосоме, они представлены в таблице ниже:
a | Серый |
b | Шоколад |
c | Платина, лиловый |
d | Рыжий |
e | Кремовый |
f | Черепаховый |
g | Черепаховый голубокремовый |
h | Черепаховый шоколадный |
j | Черепаховый лиловый |
n | Черный |
o | Сорель, медовый |
p | Желто-коричневый |
q | Черепаховый красно-коричневый |
r | Черепаховый желто-коричневый |
s | Дымчатый |
w | Белый |
y | Золотой |
x | Незарегистрированный окрас |
Какие наследуемые признаки передают хромосомы
Генетика — это младенец в научном мире. Она тот же космос, только внутри отдельно взятого индивида. На сегодняшний день учёные смогли выделить ничтожно малое количество генов, отвечающих только за самые простые признаки:
- шерсть (её цвет, структуру и длину);
- форму и расположение ушей;
- цвет глаз;
- анатомию тела (хвост, лапы, рост).
По наследству также передаются и заболевания. Они так и называются — генетические. Вот лишь некоторые из них:
- кардиомиопатия;
Гипертрофическая кардиомиопатия — наследственное заболевание, проявляющееся в утолщении стенок желудочков сердца, что приводит к снижению их способности сокращаться
- порфирия — нарушение синтеза гемоглобина;
- менингоцеле — грыжа мозга;
- болезнь Виллебранда — повышенная кровоточивость слизистых оболочек;
- атрофия сетчатки глаза;
- поликистоз почек.
Окрас шерсти
В тысяче генов кошек находятся те, которые отвечают и за их окраску, и за мутацию, приводящую к изменению цвета и структуры шерсти. Неполовая соматическая клетка содержит в протоонкогене элементы мутации по цвету шерсти, который тормозит миграцию меланобластов. Поэтому последние не могут попасть в кожу, а пигмент, соответственно, не доходит волоска шерсти. Этим и объясняется белый шерстяной покров животного.
Некоторым меланобластам удается попасть в волосяные мешочки на голове кота, тогда на шёрстке появляются окрашенные пятна. Эти клетки вполне могут достичь и сетчатки глаз: при малом количестве меланобластов глаза становятся голубыми, а при большом — зрачки у животного будут жёлтыми.
Эта же хромосома отвечает и за окрас шерсти. Обычная структурная форма меланобластов дает полосатый окрас животного. Встречаются также и полудоминантные изменения, к примеру, у абиссинского тэби. Гомозиготные особи не имеют полос, окрас однородный, а гетерозиготные особи с такой мутацией отличаются полосами на мордочке, лапках, хвосте. В случае рецессивного изменения поперечные полосы на шёрстке животного деформируются в неправильные линии на его спинке, проявляясь в продольных мощных полосах чёрного цвета.
Генная мутация, влияющая на фермент тирозиназу, ведет к альбинизму. Это происходит не только у кошек, но и у других млекопитающих.
Тирозиназа снижает свою активность в зависимости от температуры кошек – чем она меньше, тем активнее фермент. В таких случаях имеется интенсивное окрашивание периферийных частей тела: носа, кончиков лап и хвоста, ушей у бирманских кошек.
Особенности кариотипа некоторых пород
Существуют группы генов, изученные наукой. Известно их расположение и свойства.
По влиянию на организм они разделены на:
- Гены формы тела;
- Гены длины и текстуры шерсти;
- Рисунок и окрас шерсти.
Гены окраса также распределены на 3 группы:
- Гены цвета – гены, отвечающие за плотность и оттенок шерсти;
- Гены рисунка – яркость цвета и рисунок;
- Гены, ответственные за маски, которые могут появиться в окрасе кошки.
Гены формы тела — формируют важные внешние признаки, такие как лапы, уши, хвост. Ниже приведены некоторые из них:
- Нормальные уши/Уши шотландской вислоухой;
- Лишние пальцы на лапах/Обычные лапы;
- Манкс – не имеющие хвоста вовсе/Изломанный хвост/Обычный хвост.
Гены шерсти – ответственны за текстуру, длину шерсти:
- Гены Сфинкса – к бесшерстности сфинксов приводит рецессивная мутация, в то время обычная аллель доминирует и формирует у кошек обычную шерсть.
- Гены длинношерстности — образуется в итоге рецессивной мутации, что позволило получить такие породы, как Сибирская, Ангорская, Персидская.
Гены окраса или цвета шерсти – имеют три подгруппы:
- Гены чёрного цвета шерсти – имеют в целом 3 аллели, но помимо них имеют также аллель альбинизма.
- Гены рыжего окраса имеют 2 аллели: окрас и полное отсутствия оранжевого.
В данной статье мы рассмотрели основные моменты и понятия генетики кошек, касающиеся в основном внешнего вида. Главное помнить, что все не так просто, как кажется на первый взгляд, углубляться в эти вопросы, изучать мелочи можно бесконечно!
Мозаичность котов
Набор хромосом кошки, отвечающих за расцветку, локализован в X-хромосоме. Мозачность котов — нередкое явление, но все же трехцветных котов меньше, чем двухцветных.
В данном случае окраска определяется аллелями гена О:
О — влияет на желтую (или рыжую) окраску меха;
о — отвечает за черный цвет.
Черепаховые кошки гетерозиготны по этому гену, их генотип — Оо.
Желтые и черные пятна у них развиваются в результате случайной инактивации в раннем эмбриогенезе Х-хромосомы аллелем О или о. Коты могут быть только гомозиготами по этому признаку (ОУ — рыжие или оУ — черные).
Коты черепаховой окраски встречаются крайне редко — они характеризуются хромосомной конституцией ХХУ и генотипом ОоУ. Этим обусловлена редкая рождаемость мозаичных котов (или котов черепаховой окраски).
Наследование трехцветной окраски кошек:
Окрас черный – ген ХВ – генотип – ХВ ХВ; ХВУ;
Окрас рыжий – ген ХЬ – генотип – ХЬ ХЬ; ХЬУ;
Окрас черепаховый – ген – ХВ; ХЬ – генотип- ХВ; ХЬ.
Особенности хромосомного комплекса
Анализ хромосомного набора имеет значение в процессе отбора животных, выбраковки дефектных особей для обеспечения чистоты породы, а также изучения влияния разных факторов на стабильность генома. Важным условием при этом является тщательный и достоверный учет отклонений экстерьерных, физиологических и морфологических качеств собак. Владельцы должны осознавать важность правдивой информации о качестве приплода без укрытия дефектов.
Важным условием для проявления и распространения желательных для породы качеств являются надлежащие условия кормления, воспитания и обучения животных. Они являются одним из факторов, отвечающих за генетический потенциал породы, раскрытие «спящих» генов, которые совершенствуют существующую либо влияют на формирование новой породы.
Немногие задумываются над генетической предрасположенностью приобретаемого питомца. В статье я расскажу, сколько у кошки хромосом. Опишу, что представляет собой данная структура. Разъясню важность кариотипа и хромосомного комплекса. Поясню принципы наследственности. Разберу, бывают ли животные с синдромом Дауна.
Белый окрас котов
Белый цвет на хромосомном уровне – это отсутствие пигмента. Пигментные клетки блокирует один ген – W. Если в генотипе котов присутствуют рецессивные признаки этого гена (ww), то потомство будет цветным, а если имеется доминантный признак (WW, Ww) и при этом в геноме котов будет много иных обозначений генных хромосом (BOoSsddWw), то мы будет видеть все равно абсолютно белую кошку. Однако такие коты могут нести и пятнистость, и рисунок, но только в том случае, что потомство не унаследует ген W.
Принципы наследственности кошек
В структуре хромосома напоминает достаточно длинный шнурок, который формируют более мелкие составляющие части – их именуют генетики генами. Ген также расположен в хромосоме парами – по 1-й единице от кота и кошки.
- Ген в структуре генома доминирующий – преобладающий, который и задет основные характерные признаки кошки в первом ее поколении.
- Рецессивный – слабый, подавляемый ген, который в будущем может проявиться во втором и следующем поколении.
Рекомендуем к прочтению:
Сколько длится беременность у кошек?
Как вариант, если пару формируют два слабых, рецессивных гена – в помете у кошки может появиться совершенно непохожее на родителей потомство.
генетика
Хромосомы кошки с синдромом Дауна
Эта болезнь встречается не только у людей, но и у животных, кошки здесь не исключение.
На просторах Интернета «висит» много историй и фотографий из жизни таких животных. Равно как и люди, такие животные вполне могут жить и быть активными, но визуально они отличаются от здоровых. Как и людям, таким животным нужен определенный уход, забота и лечение.
На вопрос: «Сколько хромосом у кошки Дауна?», можно ответить определенно: 39.
Синдром Дауна имеет место тогда, когда в генном наборе молекул хромосом появляется еще одна лишняя хромосома – нечетная. В случае кошек, это 39 хромосома.
Кошка с лишней хромосомой в природе встречается редко по той простой причине, что животное не употребляет наркотики, спиртное, не курит, т.е. исключаются провоцирующие причины генной мутации. Но все же, это живой организм, иногда в нем тоже бывают сбои.
Ученые и биологи не имеют определенного мнения о лишней хромосоме. Одни говорят, что быть такого не может, другие говорят, что может, а третьи утверждают, что такое встречается при искусственном выведении животного в качестве подопытного.
Кошка с 20 хромосомами (двадцатая пара хромосом – лишняя) встречается, но она практически не имеет шансов для воспроизведения здорового потомства. Это, конечно, не говорит о том, что такое животное нельзя любить. Они вполне милые, но немного необычные, иные, но все же они живые. К примеру, кошка с таким синдромом (Майя из Америки) стала любимицей своих хозяев (Харрисона и Лорен). Они создали кошке свою страничку в «Инстаграме», регулярно выкладывают ее фотографии и видео. Майя стала любимицей пользователей сети Интернет, она вполне активна и жизнерадостна, хотя страдает одышкой и постоянно чихает. Но жить в свое удовольствие и ради удовольствия своих хозяев ей никто не мешает.
Кстати, не стоит путать синдром Дауна кошки с генетическими мутациями, приводящими к физическому изменению (деформации) лиц животного. Такое встречается в природе чаще, чем болезнь Дауна, и обусловлено скрещиванием между кошками-родственниками (межродовое скрещивание). Если в потомстве много животных одного рода, то рано или поздно наступят физиологические изменения не только во внешнем виде животных, но и скажутся на их развитии в целом. Если заводчики это могут контролировать, то хозяева кошек, бегающих по дворам, практически не могут это отследить. Некоторые люди, такое потомство выкидывают, другие, напротив, относятся к этому философски и также любят своих питомцев.
Принцип наследования и что наследуют кошки?
Генетическая информация, переданная от предков, названа генотипом. Внешние ее проявления фенотипом. Гены соединяются в пары, по одному от каждого родителя и могут включать доминантные – сильные, признаки которого проявятся у потомка, рецессивные – слабые, которые остаются в организме в скрытом состоянии. Соединение рецессивных генов, полученных от родителей, может привести к внешности потомка, не похожей на них. У черной кошки и дымчатого кота могут появиться кремовые котята, если у них присутствовал рецессивный кремовый ген.
Хромосомы передают потомку информацию, отвечающую за:
- расположение, форму и размер ушей;
- цвет, длину, структуру шерстяного покрова;
- форму, длину и толщину хвоста;
- заболевания.
Закономерности наследования генов используются специалистами для выведения пород кошек с заданными особенностями. Но ошибочно будет полагать, что для этого необходимо лишь знание генов, за какие признаки они отвечают и основы селекционной работы. На практике, необходимо знать и принципиальные механизмы работы генов, которые пока не достаточно изучены.
Одновременно осложняет и расширяет возможности выведения новых пород комбинации генов, которых 20 лет назад было всего около 20, а сегодня насчитывают более 2 тысяч. Первостепенную важность при отборе и выбраковки особей для породистого разведения играет рассмотрение комплекса хромосом кошек. При этом учитываются все обнаруженные в нем отклонения, а также изъяны во внешнем виде.
Иногда в наборе хромосом случаются мутации, и рождаются кошки с деформациями внешности или с болезнью Дауна. Дать прогноз касательно первого явления возможно, а вот со вторым сложнее, поскольку исследований возможных происхождений этого заболевания не так много.
Генетика – достаточно молодая наука, которая изучает механизмы наследования тех или иных признаков живыми организмами, а также законы и закономерности этого наследования. Расшифровка гена кошки помогает узнать, сколько хромосом у кошек и других животных, какое потомство принесет особь, не допустить продолжения негативных мутаций и помочь сохранить чистоту породы.
Интересное о кошках собрано в этом видеоролике
Сколько у кошки жизней?
Всем известно, что в 1996 году в мире было проведено первое клонирование (знаменитая овечка Долли). Через пять лет ученые клонировали кошку, имя дали ей – Копирка (по-русски) или Carbon Copy (это латынь).
Для клонирования была взята кошка черепаховой серо-рыжей расцветки – Радуга. Из яичников Радуги извлекли яйцеклетки и соматические клетки. Из всех яйцеклеток удалили ядра и заменили ядрами, выделенными из соматических клеток. Затем была проведена стимуляция электрошоком, и после этого реконструированные яйцеклетки трансплантировали в матку серой полосатой кошки. Именно эта суррогатная мать родила Копирку.
Но у Копирки не было рыжих пятен. При исследовании удалось выяснить следующее: в геноме кошки (самки) находятся две X-хромосомы, отвечающие именно за окрас животного.
В оплодотворенной клетке (зиготе) активны обе Х-хромосомы. В процессе деления клеток и дальнейшей дифференцировке во всех клетках тела, включая и будущие пигментные клетки, одна из Х-хромосом инактивируется (т.е. у клетки теряется либо сильно уменьшается активность). Если кошка гетерозиготна (к примеру, Оо) по гену окраски, то в одних клетках может инактивироваться хромосома, несущая аллель рыжей окраски, в других — несущая аллель черной окраски. Дочерние клетки строго наследуют состояние Х-хромосомы. В последствие этого процесса и формируется черепаховая окраска.
При клонировании кошки в ядре реконструированной яйцеклетки, извлеченном из обычной соматической клетки трехцветной кошки, не произошла полная реактивация (восстановление жизнеспособности или активности) выключенной Х-хромосомы.
Полное репрограммирование ядра хромосом при клонировании живого организма (в данном случае — кошки) не происходит. Вполне вероятно, что именно поэтому клонированные животные болеют и не всегда могут вывести здоровое потомство. Копирка жива до сих пор. Она стала мамой трех очаровательных котят.
Кошки и гены: 30 лет спустя
Павел Михайлович Бородин, доктор биологических наук
,
заведующий лабораторией Института цитологии и генетики СО РАН (Новосибирск)
«Наука из первых рук» №4(28), 2009
Некоторые ученые всю жизнь занимаются одним-единственным объектом и одной-единственной проблемой. Меня же все время носило из стороны в сторону. Одним из таких «заносов» было увлечение кошками. Не могу сказать, что я их страстный любитель… Но я посвятил этим домашним хищникам изрядную часть своего свободного времени, потому что их генетика оказалась безумно интересной. Да и знакомиться с наукой о наследственности намного увлекательнее на таком обаятельном объекте, чем на классической мушке-дрозофиле.
Первая в мире клонированная домашняя кошка по имени Копирка. Подробнее далее в статье. Фото Л. Вэдсворта
Все началось много лет назад, еще в бытность мою студентом НГУ. В качестве домашнего задания по английскому языку нужно было приготовить пересказ научной статьи, причем такой, что была бы интересной моим согруппникам. При просмотре журналов мне бросилось в глаза фото на обложке Journal of Heredity
с изображением фонтана на городской площади. Там, вокруг фонтана и на нем самом сидели, стояли и гуляли 94 кошки! Фотография отсылала к статье под названием «Некоторые коты из Сан-Паулу, Бразилия» — одной из цикла статей, посвященных геногеографии кошек.
Кошки оказались идеальным объектом для подобных исследований благодаря тому, что в их популяциях с высокой частотой встречаются мутанты по разным генам окраски (серые, черные, белые, рыжие, пятнистые и т. д.). Еще в конце 1940-х гг. на это явление обратил внимание великий английский генетик Дж. Б. С. Холдейн, и по его инициативе по всему миру генетики начали считать кошек. В итоге стала прорисовываться всемирная кошачья геногеографическая карта. Сравнение разных популяций по частотам генов окраски проливало свет на эволюцию кошки и факторы, которые ее определяли: естественный и искусственный отбор, миграции, изоляция, дрейф генов.
У этой карты был один недостаток: вся наша страна (тогда СССР) была изображена сплошным белым пятном. Естественно, я взялся этот недостаток восполнить. Сначала я пересчитал кошек в Академгородке, а затем во всех городах нашей необъятной Родины, куда меня заносила судьба.
Сам подсчет кошек был страшно увлекательным, азартным и даже в некотором роде опасным занятием. Приходилось считаться не только с самими зверями, но и общественным мнением — ведь человек, что-то высматривающий и вынюхивающий во дворах и подворотнях, вызывает обоснованные подозрения. В лучшем случае его принимают за налогового инспектора, в худшем — за иностранного агента. А когда этот человек потом достает записную книжку и что-то в нее записывает, то крепнущие подозрения могут привести к крайне нежелательным последствиям.
Поэтому котов мне приходилось наблюдать и регистрировать незаметно, по возможности — на ходу, и не замедляя шаг. Когда в моей памяти «накапливалось» более пяти котов, я заходил в телефон-автомат, снимал трубку и просил мифическую Марью Ивановну продиктовать телефон не менее мифического Ивана Ивановича. После этого я спокойно записывал информацию в книжку, благодарил Марью Ивановну и вешал трубку.
Затем я попытался расширить масштаб своих геногеографических операций, завербовав многомиллионные массы советских школьников. Для этого сделал учебный фильм на Центральном телевидении, где с самой красивой дикторшей телевидения Инной Ермиловой гулял по Москве и якобы случайно встречал кошек. Я диагностировал их по генотипам, а Инна регистрировала.
На фото — автор с телевизионной ведущей И. Ермиловой и котом Василием в учебном фильме «Геногеография, или Идем считать кошек», снятом в 1984 г.
На самом деле вся операция была построена по принципу «рояль в кустах». Усилиями нашего режиссера были мобилизованы учителя биологии из нескольких московских школ. В свою очередь, они мобилизовали своих учеников, выдали каждому по пузырьку валерьянки и послали на отлов бродячих кошек. Нас с Инной на казенном микроавтобусе привозили «на точку». Мы становились в задумчивые позы (я — весь в белом, она — в красном), режиссер командовал «Мотор!», и в этот момент очередной школьник выпускал на нас очередного кота.
После этого школьники со всех концов нашей Родины прислали мне три мешка писем с описаниями локальных популяций кошек. Письма были замечательными, но научно малоинформативными. Пришлось рекрутировать специалистов — коллег-генетиков.
Плодом всех трудов стали две научные статьи в тот же Journal of Heredity
и монография «Генетика кошки». Увлекшись, я написал и две научно-популярные книжки — «Этюды о мутантах» (1983) и «Кошки и гены» (1995).
Кроме всего прочего, я написал еще две научно-популярные статьи для журнала «Химия и жизнь». Первая из них под названием «Кошки, гены и география» вышла в 1979 г., вторая — «Кошки и гены: 10 лет спустя» — в 1989 г. Так что нынешнюю поневоле пришлось назвать «Кошки и гены: 30 лет спустя».
Кошачьи хромосомы
Что же произошло в генетике домашней кошки за последние 20 лет? С одной стороны, ситуация с геногеографией практически не изменилась. Глобальные карты стали достаточно информативными уже 20 лет назад, и добавление новых данных перестало влиять на интерпретацию. Поэтому публикации по этой теме постепенно сошли на нет. С другой стороны, за истекшее десятилетие в генетике кошки произошли важные события, связанные в том числе и развитием методов секвенирования геномов.
Первые результаты расшифровки генома кошки появились в 2007 г. Пока расшифровано примерно 65% кошачьих генов. Сравнение генома кошки с хорошо исследованными геномами человека, шимпанзе, собаки, коровы, мыши и крысы позволило идентифицировать у нее 20 285 генов. Следовательно, общее число генов кошки, по-видимому, близко к количеству генов человека, т. е. тридцати тысячам.
Очень интересные и неожиданные результаты дало сравнение генетического состава хромосом кошки и других млекопитающих. Оказалось, что кошка, как и человек, довольно незначительно перестроила свои хромосомы за 80–90 млн лет эволюции от общего предка.
При этом, несмотря на то, что хромосомы кошки выглядят крайне консервативными в макроэволюционном контексте, они оказались чемпионами среди хромосом млекопитающих по частоте генетической рекомбинации
— перераспределения генов путем обмена участками парных хромосом. А, как известно, рекомбинация является главным поставщиком новых сочетаний генов, которые являются базой для естественного отбора, микро- и макроэволюционных процессов.
Генетическая рекомбинация как источник наследственной изменчивости
Рекомбинация происходит в первом делении мейоза — процесса, в результате которого после двух клеточных делений из одной обычной клетки образуются четыре половые, содержащие не двойной, а одинарный набор хромосом. При подготовке к первому делению гомологичные (парные) хромосомы сближаются и выравниваются по длине. В это время в их ДНК возникают множественные двунитевые разрывы. В воссоединении разорванных нитей ДНК активно участвует белок Rad51, который связывается со свободными концами разорванных ДНК и внедряет их в ДНК гомологичных хромосом, одновременно расплетая ДНК-мишень.
Найдя комплементарный участок, внедрившаяся нить ДНК с ним спаривается. Однако большая часть связок между ДНК разрезается и сшивается так, что восстанавливается исходное состояние цепей ДНК (безобменный путь). У всех исследованных млекопитающих (кроме кошки!) лишь менее десяти процентов связок сшивается крест-накрест (обменный путь). При этом ДНК одного из гомологов в пунктах обмена соединяется с ДНК другого. Это и есть точки рекомбинации.
Опознавательным знаком для точек рекомбинации служит белок MLH1, принадлежащий к семейству белков репарации, чья функция — исправлять ошибки спаривания ДНК, т. е. устранять неспаренные нуклеотиды. С помощью антител к MLH1, меченных флуоресцентными красителями, можно проанализировать частоту и распределение рекомбинационных событий по геному
Оказалось, что по плотности рекомбинационных событий
, т. е. обменов отдельными фрагментами цепочек ДНК на единицу длины хромосомы, кошка занимает первое место среди всех изученных млекопитающих. Среднее расстояние между точками рекомбинации у кошки равно 3,7 мкм (для сравнения: у мыши — 7,1 мкм, у человека — 6,0 мкм). При этом нижний предел этого расстояния составляет всего 0,05 мкм, т. е. на грани разрешения микроскопа.
Высокая плотность рекомбинации у кошки сопряжена с высокой эффективностью этого процесса. У всех других исследованных млекопитающих только небольшая (меньше 10%) часть первичных связок между ДНК гомологичных хромосом сшивается крест-накрест, приводя к образованию рекомбинантных хромосом. У кошки доля связок, разрешаемых по рекомбинантному пути, составляет 25%. То есть процесс рекомбинации у кошки организован более экономично, чем у других млекопитающих: при меньшем числе двунитевых разрывов ДНК он обеспечивает достаточно высокий уровень рекомбинации.
Сиамская замена
Двадцать лет назад генетическая карта хромосом кошки содержала всего несколько десятков генов; сейчас их число приближается к двум тысячам. В том числе картированы и расшифрованы гены окраски и выявлены критические точки, мутации в которых приводят к ее изменениям.
Так, на одной из соматических
(неполовых) хромосом локализованы две мутации по окраске. Мутация доминантной белой окраски, находящаяся в протоонкогене
с-kit
, нарушает способность к миграции у
меланобластов
— предшественников пигментных клеток эмбриона. И поскольку меланобласты не успевают достигнуть вовремя кожи, пигмент не попадает в волоски.
В результате шерсть вырастает совершенно белой. Если же иногда меланобластам все же удается внедриться в волосяные фолликулы, расположенные на голове кошки, то там появляются небольшие окрашенные участки. У носителей этой мутации количество меланобластов, достигших сетчатки глаза, может различаться. Если их много, то глаза будут иметь нормальный желтый цвет, если очень мало — голубой.
Кошки, гомозиготные по мутации «абиссинский тэбби», имеют однородную окраску. Этот гордый красавец — самый дипломированный в мире абиссинский кот из питомника Des Cavalier
(Москва). Владельцы: И. Кудрявцева и В. Каланча
В той же хромосоме находится ген, задающий рисунок окраса. Нормальный аллель
(структурная форма) этого гена дает полосатую, тигровую окраску. Иногда эти полосы сплошные, иногда — разорванные. Известна полудоминантная мутация
абиссинский тэбби
. У
гомозигот
(т. е. у особей, имеющих пару одинаковых аллелей) по этой мутации никаких полос на теле не обнаруживается: звери имеют однородную окраску. А вот у гетерозигот по этой мутации полосы располагаются на хвосте, морде и лапах. Рецессивная мутация в том же гене —
мраморный тэбби
— превращает поперечные полосы в завитки или разводы неправильной формы. Часто у таких котов по спине тянется широкая черная полоса.
Кошки с нормальным геном, задающим рисунок окраса, — привычно полосатые. Рецессивная мутация в том же гене — «мраморный тэбби» — превращает поперечные полосы в завитки или разводы. На фото
— именитый мраморный кот породы селкирк рекс (с кудрявой шерстью). Владелец: Н. Иерусалимова (Новосибирск). Фото
Live Studio
При альбинизме
— явлении, широко встречающемся у разных видов млекопитающих, — имеются мутации в гене, кодирующем фермент тирозиназу. При этом синтез фермента либо полностью блокируется, либо синтезируется дефектный фермент с измененной активностью.
У кошек описано несколько таких мутаций. У гомозигот по мутации бирманского альбинизма
активность тирозиназы несколько снижена по сравнению с нормой. Причем степень подавления активности фермента зависит от температуры тела: при более низкой по сравнению с нормальной температурой он более активен. Именно поэтому у бирманских кошек более интенсивно окрашены участки шерсти на кончиках лап, хвоста, ушей, на носу, то есть в тех районах тела, где температура понижена.
Люди не так уж и далеко ушли от своих домашних любимцев. Например, хромосома B1 у кошки состоит из фрагментов хромосом 4 и 8 человека, а D1 практически идентична хромосоме 11 человека. По сравнению с кошкой хромосомы мыши претерпели гораздо более значительные перестройки. Так, хромосома B1 кошки содержит фрагменты пяти, а хромосома D1 — четырех мышиных хромосом
То же самое можно сказать и относительно мутации сиамского альбинизма
. Однако уровень депигментации при этом гораздо выше: у сиамских кошек шерсть на туловище, как правило, не имеет пигмента, а окраска сохраняется лишь на кончиках лап, хвоста, на ушах и на носу. Но даже и эти участки пигментированы слабее, чем у бирманских кошек. Глаза, как правило, голубые из-за снижения количества пигмента в сетчатке.
Современные тайские кошки — представители самого старого фенотипа сиамских кошек. Характерный окрас — темные конечности, хвост и «маска» на мордочке при светлом корпусе — один из видов альбинизма с частично подавленным синтезом пигмента, причиной которого является точечная мутация в гене, кодирующем фермент тирозиназу. На фото
— помет тайских котят. Заводчик М. Шубина. Фото Е. Челяевой (Новосибирск)
Сейчас мы точно знаем молекулярную природу этих мутаций: они получаются благодаря замене в генной последовательности одного-единственного нуклеотида! У сиамских кошек в гене, ответственном за синтез тирозиназы, заменяется нуклеотид, стоящий в 422-й позиции от начала гена. У нормальных кошек там находится гуанин, у сиамских — аденин. В результате последовательность нуклеотидов, кодирующая аминокислоту аргинин, превратилась в последовательность, кодирующую глицин. Замена аргинина на глицин в белке тирозиназе привела к снижению его ферментативной активности при нормальной температуре тела.
У бирманских кошек аналогичное ослабление окраски на теле обусловлено заменой нуклеотида в 227-й позиции.
Родственница лошади
Детальный анализ геномов кошки и других млекопитающих привел к радикальному пересмотру всего родословного древа млекопитающих. До этого филогенетическое древо выглядело вовсе даже не как древо, а как куст, у которого все ветви — отряды — отходили от одного корня. Сейчас на нашем общем родословном древе мы можем различать последовательные ветвления.
Выделяются три главные ветви: афротерии
(слоны, сирены, даманы, трубкозубы, златокроты и др.),
неполнозубые
(эндемики Южной Америки — броненосцы, ленивцы и муравьеды) и
лавразиотерии
(все остальные плацентарные млекопитающие). Эти три ствола образовались из-за раскола древнего мегаматерика Пангеи на Гондвану (современные Африка, Индия, Южная Америка, Антарктида и Австралия) и Лавразию (соответственно Евразия и Северная Америка). Гондвана затем раскололась на составляющие материки, причем первой отделилась Африка. На этом изолированном континенте и появился надотряд афротериев.
Благодаря молекулярно-генетическим данным на общем родословном древе млекопитающих выделены последовательные ветвления. По: (Nishihara, Hasegawa & Okada, 2006) | Судя по филогенетическому древу семейства кошачьих, домашняя кошка появилась в Евразии около 5 млн лет назад. По: (Brien et al., 2008) |
Интересующие нас кошки входят в отряд хищных, который принадлежит к ветви лавразиотериев, включающей наибольшее число видов. Дальнейшее ветвление приводит, в числе прочего, к хищно-копытно-рукокрылым млекопитающим. И как бы ни безумно выглядела эта группа, ее общее происхождение убедительно подтверждается молекулярным данными. Более того, эти же данные показывают, что дальнейшее ветвление внутри этой группы происходило вовсе не так, как можно было бы заключить из внешнего облика животных, ее составляющих.
Первыми отделились кито-парнокопытные
. (Это не опечатка: именно так — кито-парнокопытные. В старом, «домолекулярном» древе китов выводили прямо от корня куста млекопитающих. Сейчас оказалось, что ближайшим родственником китов является бегемот). Другая ветвь —
пегасохищные
— ветвится на непарнокопытных (лошади, тапиры, носороги),
хищных
(кошки, собаки, медведи, моржи и др.) и
рукокрылых
(летучие мыши).
Порядок ветвления в пределах надотряда пегасо-хищных пока не вполне понятен, но есть указания на то, что первыми выделились рукокрылые, а уже потом произошло разделение непарнокопытных и хищных. Но что совершенно определенно, так это то, что последний общий предок лошади и кошки существовал позже (т. е. ближе к нашему времени), чем последний общий предок лошади и коровы.
Родословное древо самих кошачьих было также существенно пересмотрено за последние 20 лет. Выяснилось, что первое разделение этого семейства произошло около 11 млн лет назад в Азии, когда от него отделилась линия больших рычащих кошек (лев, тигр, леопард, ягуар и снежный барс). Многие виды, принадлежащие к этой группе, имеют практически идентичные хромосомные наборы. В природе они сохраняются как отдельные виды, но в неволе от них легко получить гибридное потомство. Многие зоопарки имеют тигрольвиц, лигров и т. д. И хотя большинство из них стерильно, сама возможность получения жизнеспособных гибридов между этими видами указывает на большое генетическое сходство рычащих кошек друг с другом.
Вторая группа, выделившаяся тоже в Азии, состоит из мраморного кота и азиатской золотистой кошки, ныне обитающих в Юго-Восточной Азии. От этой линии отделилась и мигрировала в Африку ветвь, к которой относится сервал, каракал и африканская золотистая кошка. Это произошло 6–10 млн лет назад, когда уровень мирового океана был довольно низким, и между Африкой и Азией существовала перемычка в районе современного Красного моря.
Карта распределения мраморной окраски в популяциях кошек напоминает картину диффузии. Концентрация максимальна на Британских островах, чуть ниже во Франции и далее постепенно падает по мере удаления от центра распространения. В Сибири мраморные кошки исключительно редки. Это видно по частоте встречаемости мраморных кошек в портовых городах, в том числе во Владивостоке и Петропавловске-Камчатском
В это же время остальные кошки широко расселились по Азии, а часть их перешла по Берингийскому мосту в Северную Америку. Именно там находят самые древние останки рыси, оцелота и пумы. Затем потомки североамериканцев мигрировали назад в Азию и затем в Африку, где дали начало евроазиатской рыси и африканскому гепарду. В конце плиоцена (2–3 млн лет назад) образовался Панамский перешеек между Северной и Южной Америкой. В Южную Америку проникла линия оцелота и дала начало семи новым видам кошек. Туда же перебрались из Северной Америки пума и ягуар.
Разделение остальных азиатских кошек на отдельные роды и виды произошло в Евразии в течение последних 5 млн лет. Именно к этой группе принадлежит домашняя кошка.
Сколько жизней у кошки?
Как известно, первым клонированным животным стала овца: знаменитая Долли родилась в 1996 г. Через пять лет на свет появилась первая клонированная кошка, метко названная CC (Carbon Copy
) или, по-русски, Копиркой.
Оригиналом для копирования выбрали черепаховую
(серо-рыжую) кошку с белым пятном по имени Радуга. Из ее яичника были выделены яйцеклетки и обычные соматические клетки. Из каждой яйцеклетки удалили ядро и заместили его ядром, выделенным из соматической клетки. После стимуляции электрошоком реконструированные яйцеклетки трансплантировали в матку серой полосатой кошки. От этой суррогатной матери и родилась Копирка (Shin et al, 2002).
Почему у Копирки нет рыжих пятен?
Как известно, у кошек, как и других самок млекопитающих, в геноме присутствуют две Х-хромосомы. И именно в них находится ген, отвечающий за окраску шерсти. У гена имеется два аллеля — рыжей и нерыжей (черной) окраски.
В зиготе — клетке, образующейся при слиянии яйцеклетки и сперматозоида, — активны обе Х-хромосомы. В ходе клеточных делений и последующей дифференцировки во всех клетках тела, в том числе в будущих пигментных клетках, одна из Х-хромосом инактивируется. Если кошка гетерозиготна по гену окраски, то в одних клетках может инактивироваться хромосома, несущая аллель рыжей окраски, в других — несущая аллель черной окраски. Дочерние клетки строго наследуют состояние Х-хромосомы. В результате формируется черепаховая окраска. Очевидно, что при клонировании в ядре реконструированной яйцеклетки, взятом из обычной соматической клетки трехцветной кошки, не произошла полная реактивация выключенной Х-хромосомы.
Первая в мире клонированная кошка Копирка не похожа ни на свою суррогатную полосатую мать (фото вверху
), ни на свой генетический оригинал черепахового окраса (
фото внизу
) — у нее нет рыжих пятен, как положено кошкам этого генотипа. Фото Л. Вэдсворта.
По генотипу Копирка была точной копией Радуги, но вот по внешнему виду она отличалась от оригинала: у нее не было рыжих пятен. Авторы статьи в Nature
довольно уклончиво объясняли это различие: «Характер пигментации у многоцветных животных определяется не только генетическими факторами, но факторами развития, не контролируемыми генотипом».
Такое высказывание можно понимать как угодно. Я это понимаю так. В соматической клетке, из которой взято ядро для создания Копирки, была инактивирована одна из двух половых Х-хромосом — та, которая как раз и несла аллель рыжей окраски. А, как известно, состояние Х-хромосомы стойко передается в поколениях соматических клеток.
В случае с Копиркой поразительно то, что перенос ядра соматической клетки в яйцеклетку не привел к реактивации Х-хромосомы. Следовательно, процедура клонирования не приводит к полному репрограммированию ядра. Может быть, с этим явлением связаны и проблемы со здоровьем и размножением у клонированных животных. Правда, Копирка на здоровье не жалуется. Ей сейчас уже 8 лет, а три года назад она стала счастливой матерью трех котят.
Компания Genetic Savings
&
Clone
, финансировавшая создание Копирки, попыталась сделать на этом бизнес. К сожалению, клиент не пошел: удалось продать только двух клонированных домашних любимцев (за 50 и 32 тыс. долл.), и на этом дело закончилось.
Однако эстафету подхватили в Южной Корее: первая кошка была клонирована там в 2004 г. Корейские исследователи рассматривали ее клонирование не как самоцель, а как промежуточный этап в решении другой, гораздо более амбициозной задачи.
Их интересовало получение GM (генетически модифицированных) кошек. Для этого они выделили клетки соединительной ткани — фибробласты
— из уха белого ангорского кота. Фибробласты культивировали в питательной среде, в которую был добавлен мобильный генетический элемент, содержащий ген, который кодировал красный флуоресцентный белок.
После того как мобильный элемент проник в ядра фибробластов и встроился в хозяйскую ДНК, эти ядра выделили и перенесли в яйцеклетки, из которых предварительно удалили собственные ядра. Из этих реконструированных яйцеклеток развились два GM котенка, у которых красный флуоресцентный белок синтезируется практически во всех клетках тела. В результате под ультрафиолетовым излучением эти коты светятся мистическим красным светом (Yin et al., 2008). В статье, опубликованной в 2008 г. в журнале Biology of Reproduction
, особенно интригует последняя фраза: «Данная технология будет полезна для направленного создания дизайнерских котов».
Трудно представить, сколько будут стоить подобные дизайнерские GM коты и кому они могут понадобиться. При этом меня ничуть не пугают генетически модифицированные кошки. Ведь если подумать хорошенько, то все кошки в мире были генетически модифицированы за долгие поколения естественного и искусственного отбора, которому подвергались их предки.
P.S. Памятуя о последствиях своей научно-популярной деятельности, сообщаю, что котов не клонирую, генетически не модифицирую, рекомендаций по случке не даю и котенка в мои руки прошу не предлагать.
Литература:
1) Бородин П. М. Этюды о мутантах. — М.: Знание, 1983. 2) Бородин П. М, Рувинский А. О. Генетика кошки. — Новосибирск: Наука, 1992. 3) Бородин П. М. Кошки и гены. — ЗАО Зоосалон, 1995. 4) Бородин П. М. Кошки, гены и география. //
Химия и жизнь
. — 1979. №4. С. 40–46. 5) Бородин П. М. Кошки и гены: десять лет спустя. //
Химия и жизнь
. — 1989. №4. С. 40–45. 6) Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L et al. A cat cloned by nuclear transplantation. //
Nature
. — 2002. V. 415(6874). — P. 859.
Работа по анализу рекомбинации у кошек выполнена при поддержке гранта РФФИ № 04-04-48024-a
Автор и редакция благодарят И. Бодунова (Клуб любителей кошек «Азия», Новосибирск), М. Вестузина и Л. Вэдсворта (Texas A&M College of Veterinary Medicine, College-Station
) за помощь в подготовке иллюстраций